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Abstract. The finite-size scaling (FSS) functions for anisotropic three-dimensional (3D) Ising
models of sizeL1×L1× aL1 (a: anisotropy parameter) are studied by Monte Carlo simulations.
We study thea dependence of FSS functions of the Binder parameterg and the magnetization
distribution functionp(m). We have shown that the FSS functions forp(m) at the critical
temperature change from a two-peak structure to a single-peak one by increasing or decreasing
a from 1. We also study the FSS near the critical temperature of the layered square-lattice Ising
model, when the systems have a large two-dimensional (2D) anisotropy. We have found the 3D
and 2D FSS behaviour depending on the parameter which is fixed; a unified view of 3D and 2D
FSS behaviour has been obtained for the anisotropic 3D Ising models.

1. Introduction

Finite-size scaling (FSS) has been increasingly important in the study of critical phenomena
[1,2]. This is partly due to the progress in the theoretical understanding of finite-size effects,
and partly due to the application of FSS in the analysis of simulational results.

Recently, more attention has been paid to the universality of FSS functions [3] for both
percolation models [4–7] and Ising models [8–10]. It has been shown that several quantities
including distribution functions on various lattices have universal FSS functions by choosing
appropriate metric factors. It should be noted that universal FSS functions depend on boundary
conditions and the shape of finite systems.

In the percolation problem it was considered, until quite recently, that there exists only one
percolating cluster on two-dimensional (2D) lattices at the percolating threshold. However, the
importance of the number of percolating clusters for anisotropic systems, which was pointed
out by Hu and Lin [5], has captured current interest [5,11–13]. Aizenman [11] derived the upper
and lower bounds of the probability for the appearance ofn percolating clusters,Wn, for 2D
percolation at criticality. His result was later confirmed by Monte Carlo simulations [12]. By
use of conformal field theory, Cardy [13] proposed an exact formula forWn at the percolation
threshold for the systems with large aspect ratios [13]. The aspect ratioL1/L2 is an important
quantity in the FSS functions for anisotropic 2D systems of sizeL1 × L2. The ‘nonuniversal
scaling’ of the low-temperature conductance peak heights for Corbino discs in the quantum
Hall effect has been discussed in terms of the number of the percolating clusters [14].

For the Ising model, the aspect ratio dependence of the Binder parameter [15] at the critical
temperature was studied by Kamieniarz and Blöte [16]. Binder and Wang discussed anisotropic

0305-4470/99/427263+09$30.00 © 1999 IOP Publishing Ltd 7263



7264 K Kaneda et al

FSS [17]. The aspect ratio dependence of the universal FSS functions for the Binder parameter
and magnetization distribution function was discussed by Okabeet al [10] for the 2D Ising
model with tilted boundary conditions. For a fixed set of the aspect ratio and the tilt parameter,
the FSS functions were shown to be universal [10]. Quite recently, based on the connection
between the Ising model and a correlated percolation model, Tomitaet al [18] studied the FSS
properties of distribution functions for the fraction of lattice sites in percolating clusters in
subgraphs withn percolating clusters,fn(c), and the distribution function for magnetization
in subgraphs withn percolating clusters,pn(m). They studied the change of the structure of
the magnetization distribution function for the 2D system with a large aspect ratio in terms of
percolating clusters.

Almost all the results above for the shape effects on FSS functions are for 2D systems
except for some works on the percolation problem [6, 7]. It is quite important to extend
these arguments for higher-dimensional systems. Conformal invariance plays a role in 2D
systems [19], but is not so powerful for three-dimensional (3D) systems as for 2D ones.
Moreover, there are two limiting cases for anisotropic 3D systems, that is, the one-dimensional
(1D) limit and the 2D limit. It is interesting to study various types of scaling for anisotropic
3D systems.

In this paper, we study the FSS functions for anisotropic 3D systems by Monte Carlo
simulations. We are concerned with the ferromagnetic Ising model on theL1×L1×aL1 simple
cubic lattices with the periodic boundary conditions, wherea is regarded as the anisotropy
parameter. Attention is paid mainly to the effect of anisotropy, and we study thea dependence of
the FSS functions for quantities such as the Binder parameter and the magnetization distribution
function.

At the critical temperature for the 3D Ising model, we find that FSS functions for the
magnetization distribution function change from a two-peak structure to a single-peak one,
when the anisotropy parametera is varied from 1. This behaviour is observed both for the
systems with 2D and 1D anisotropy. When a system has a large 2D anisotropy, we find that
finite-size systems with a fixed anisotropy parameter show good FSS behaviour as 3D systems
near the critical temperatures for the layered square-lattice Ising models. In contrast, when
we fix a number of layers and apply the FSS analysis for layered systems, these systems are
scaled as 2D ones.

We organize the rest of the paper as follows. In section 2, we define the FSS functions and
describe the quantities we treat in this paper. In section 3, we present our simulational results.
In section 4, our results are summarized and discussed.

2. Finite-size scaling

If a quality Q has a singularity of the formQ(t) ∼ tω (t = T − Tc) near the criticality
t = 0, then the corresponding quantityQ(L, t) for finite systems with the linear sizeL has
the following scaling form:

Q(L, t) ∼ L−ω/νf (tL1/ν) (1)

whereν is the correlation-length critical exponent andf (x) is the scaling function. Of course,
the corrections to FSS are not negligible for smallerL. The FSS is also applicable to the
distribution function ofQ. At the criticality t = 0, and the FSS function has the following
form:

p(Q;L, t = 0) ∼ Lω/νF (QLω/ν). (2)
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In this paper we focus on the Binder parameter and the magnetization distribution function.
The Binder parameter [15] is given by

g = 1

2

(
3− 〈m

4〉
〈m2〉2

)
(3)

and serves as a measure of the non-Gaussian nature of the distribution function. The FSS
functions for these quantities are given by

g(L, t) ∼ g(tL1/ν) (4)

p(m;L, t = 0) ∼ Lβ/νp(mLβ/ν) (5)

whereβ is the magnetization exponent.

3. Results

We used the Metropolis Monte Carlo method to simulate the ferromagnetic Ising model on
L1×L1× aL1 simple cubic lattices with different values ofL1 anda, implementing periodic
boundary conditions.

First, we show the results fora 6 1, that is, a 2D anisotropic case. We plot the temperature
dependence of the Binder parameterg for a = 1, 1

2, and1
4 of various sizes in figure 1(a). Error

bars are within the size of the plotted symbols unless specified otherwise. We give the FSS plots
in figure 1(b); g is plotted as a function of(T −Tc)L1/ν , whereL is given by (L1×L1×aL1)

1/3.
ForTc, β andν, we use the numerically estimated values for the 3D Ising model [20], that is,
Tc = 4.5114,β = 0.320 andν = 0.625. From now on, we represent the temperature in units
of J . From figure 1(b) we see that the FSS functions havea dependence in 3D systems, which
is similar to the case of 2D systems.

We can get more information on thea dependence from the magnetization distribution
functionp(m). In figure 2, we show the scaling plot of the magnetization distribution function
p(m) atT = Tc for various sizes with different anisotropy parameters (a 6 1). From the figure
we find good FSS behaviour and also a largea dependence. By decreasing the anisotropy
parametera from 1, the FSS functions for the magnetization distribution function change from
a two-peak structure to a single-peak one.

Next, we turn to the case ofa > 1, that is, a 1D anisotropic case. We plot the temperature
dependence ofg for a = 1, 2 and 4 of various sizes in figure 3(a). The FSS plots are given
in figure 3(b). We see similar behaviour of the FSS functions fora > 1, that is,g takes
smaller values if we changea from 1. We show thea dependence of the FSS functions of the
magnetization distribution functions atT = Tc for a > 1 in figure 4. By increasinga from 1,
FSS functions forp(m) change from a two-peak structure to a single-peak one again.

If we compare the results of figures 1(b) and 3(b), and also those of figures 2 and 4, it
seems that there could be a set of the anisotropy parametersa < 1 anda > 1 which give the
same FSS functions. However, more careful calculations are needed to clarify this universality.

Let us consider the origin of thea dependence of FSS functions. This problem is related to
the multiple percolating clusters. The connection between critical phenomena of spin models
and percolation problems has been studied for a long time [21–23]. Quite recently, Tomita
et al [18] used the cluster formalism to investigate the percolating properties of the 2D Ising
model. They elucidated that the existence of several percolating clusters for anisotropic finite
systems leads to the change of the structure ofp(m). That is, the combination of up-spin
clusters and down-spin clusters gives the contribution ofm ∼ 0 in p(m) for anisotropic case.
The a dependence ofp(m) for the 3D systems can be understood in the same way as the
2D systems. We can apply this argument to cases for both 2D anisotropy (a < 1) and 1D
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Figure 1. (a) Temperature dependence ofg for several lattices witha = 1, 1
2 and 1

4 . The
temperature is represented in units ofJ . (b) Plot ofg as a function of(T − Tc)L1/ν .
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Figure 2. p(m)L−β/ν atT = Tc as a function ofmLβ/ν for several lattices witha = 1, 1
2 and 1
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Figure 3. (a) Temperature dependence ofg for several lattices witha = 1, 2 and 4. (b) Plot ofg
as a function of(T − Tc)L1/ν .
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Figure 4. p(m)L−β/ν atT = Tc as a function ofmLβ/ν for several lattices witha = 1, 2 and 4.
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Figure 5. g atT = Tc, gc, as a function ofa. We use a semi-logarithmic scale.
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Figure 6. Temperature dependence ofg for several systems. The numbers of layers are 4, 6 and 8.

anisotropy (a > 1). The value of Binder parameterg atT = Tc, of course, reflects upon the
structure of the distribution functionp(m).

In order to see the anisotropy parameter dependence more clearly, we plot thea dependence
of the Binder parameterg at criticality,gc, in figure 5. Here, we use the semi-logarithmic scale
for our plot. We add several data other than those given in figures 1 and 3. For large enough
a or small enougha, the corrections to FSS become larger. From figure 5, we find thatgc
takes the maximum value ata = 1 and decreases gradually in both directions,a < 1 and
a > 1. For very large or very smalla, gc tends to vanish, which indicates that the distribution
functionp(m) approaches the Gaussian distribution. This behaviour is consistent with above-
mentioned multiple-percolating-cluster argument. Such ana dependence ofg at criticality for
1D anisotropy of the 2D Ising model has already been discussed [16].

It is also interesting to consider the relation to the layered square-lattice Ising model
for the case of large 2D anisotropy. The critical temperatures and the shift exponent for the
layered square-lattice Ising model were studied by Kitataniet al [24]. In figure 6, we give the
temperature dependence ofg for several lattices, where the number of layers,s, is 4, 6 and 8.
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Figure 7. Scaling plot ofg for fixed a(= 1
16). The scaled variable is(T − Tcs)L1/ν for eachs.

The values ofTcs areTc4 = 4.2364,Tc6 = 4.3701 andTc8 = 4.4222. We use the 3D exponent,
ν = 0.625.

If we make the system size large by fixings, the system becomes the layered square-lattice
Ising model. We can estimate thes-dependent critical temperatureTcs from the crossing point
of the curves for fixeds in figure 6. Our estimates,Tc4 = 4.2364(4), Tc6 = 4.3701(4) and
Tc8 = 4.4222(4), are consistent with those of [24].

Picking up the data fora = 1
16 from figure 6, we plotg as a function of(T − Tcs)L1/ν

in figure 7. Here we treatT − Tcs for eachs andν is chosen as 0.625, that is, the 3D value.
We have good FSS behaviour in figure 7, but this FSS plot is different from that given in
figure 1(b), whereT − Tc has been treated. We should note thatT − Tcs can be rewritten as
T − Tcs = (T − Tc) + (Tc − Tcs) andTc − Tcs ∝ s−λ. Hereλ is the shift exponent and is
shown to be 1/ν3D [24]. Thus, for fixeda, we have 3D FSS forT −Tcs . In this case, the value
of gc atT = Tcs is∼0.92, which is simply thegc value for the isotropic 2D Ising model. It is
different from thegc value of∼0.04 for the anisotropic 3D Ising model fora = 1

16, which is
given in figure 5. In figure 8, we also show the scaling plot of the magnetization distribution
functionp(m) atT = Tcs for eachs, fixing a as 1

16. We have good FSS behaviour using 3D
exponents. There are two distinct peaks inp(m), which is a typical character ofp(m) at Tc
for the isotropic 2D Ising model. In contrast, if we pick up the data for fixeds, for example,
s = 6, these systems are expected to be scaled by using 2D critical exponents. Since we fix
s(= aL1), the scaled variable is given by(T − Tcs)L1/ν

1 . Using the 2D exponent,ν2D = 1, we
get a very good scaling plot, shown in figure 9. Of course, the critical valuegc atT = Tc6 is
∼0.92, that is, thegc value for the isotropic 2D system.

4. Summary and discussions

To summarize, we have studied the FSS functions for anisotropic 3D Ising model by Monte
Carlo simulations. The anisotropy parameter,a, dependence of the FSS functions on the
Binder parameter and the magnetization distribution function has been investigated. We have
shown that the magnetization distribution functions change from two-peak structures to single-
peak ones asa increases or decreases from 1. This change of distribution functions may be
attributed to the combination of up-spin percolating clusters and down-spin percolating clusters
for anisotropic systems, which is the same as the case of 2D systems [18]. We should also note
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Figure 8. Scaling plot ofp(m) atT = Tcs for fixeda(= 1
16); p(m)L

−β/ν as a function ofmLβ/ν .
The values ofTcs areTc4 = 4.2364,Tc6 = 4.3701 andTc8 = 4.4222. We use the 3D exponents,
β = 0.320 andν = 0.625.
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Figure 9. Scaling plot ofg for fixeds(= 6). The scaled variable is(T−Tc6)L1/ν
1 andTc6 = 4.3701.

We use the 2D exponent,ν = 1.

that the distribution functionp(m) approaches the Gaussian distribution for large anisotropy,
which is another indication of the multiple-percolation-cluster argument. In a future study, it
would be interesting to calculate the probability for the appearance ofn percolating clusters,
Wn, for the anisotropic 3D Ising model and to make cluster analysis.

Moreover, we have considered the relation to the layered square-lattice Ising models for
large 2D anisotropy. We have obtained 3D FSS behaviour near the critical temperature of the
layered square-lattice Ising models,Tcs , for fixeda. In contrast, when we fix the number of
layers, we have shown 2D FSS behaviour nearTcs . Thus, we have obtained a unified view of
3D and 2D FSS behaviour for the anisotropic 3D Ising models.

We have studied the shape effects of FSS functions for 3D Ising models. FSS functions also
depend on boundary conditions. Extension of the 2D results for various boundary conditions,
for example, tilted boundary conditions [10], to 3D systems will be interesting. This study is
now in progress.
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